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1 Navy Case. 77393 

2 

3 SYSTEM AND METHOD FOR TRACKING 

4 VEHICLES USING RANDOM SEARCH ALGORITHMS 

5 

6 STATEMENT OF GOVERNMENT INTEREST 

7 The invention described herein may be manufactured and used 

8 by or for the Government of the United States of America for 

9 governmental purposes without the payment of any royalties 

10 thereon or therefor. 

11 

12 CROSS REFERENCES TO RELATED PATENT APPLICATIONS 

13 The instant application is related to co-pending U.S. Patent 

14 Application Serial No. 08/747,469, filed 12 November 1996 of D.J. 

15 Ferkinhoff and J.G. Baylog entitled METHOD AND APPARATUS FOR 

16 PERFORMING MUTATION IN A GENETIC ALGORITHM-BASED UNDERWATER 

17 TARGET TRACKING SYSTEM (Navy Case No. 77851). 

18 

19 BACKGROUND OF THE INVENTION 

20 (1) Field of the Invention 

21 The present invention relates to a system and a method for 

22 tracking vehicles using random search algorithm methodolgies. 

23 (2) Description of the Prior Art 

24 Contact tracking encompasses processing data from various 

25 sensors to provide an estimate of a contact's position and 

26 velocity, or state.  Under favorable noise, geometric and 



1 environmental conditions, or highly observable conditions, 

2 reliable unique estimates of the target state can be obtained. 

3 However, most practical situations do not conform to these 

4 conditions, which in conjunction with the inherent uncertainty in 

5 selecting appropriate mathematical models, can cause instability 

6 in the estimation process.  In addition, the relationship between 

7 the contact state and the observed measurements is nonlinear. 

8 Therefore, any linearization procedures applied can introduce 

9 additional estimation errors.  Under these conditions, 

10 alternative algorithms for finding peaks in these multi- 

11 dimensional function to provide efficient and reliable estimates 

12 are desired. 

13 Variable gradient-based estimation techniques, such as 

14 Kaiman filters or maximum likelihood estimators, are available to 

15 provide tracking estimates by searching for the peak of the 

16 target state density function.  However, these techniques employ 

17 a search procedure based on the local gradient of the density 

18 function, which can lead to convergence to local maxima.  Another 

19 potential problem associated with these algorithms is that they 

20 can diverge when the problem becomes ill-conditioned, such as 

21 when the measurements are very noisy or the data is sparse and 

22 intermittent.  These conditions are especially prevalent when 

23 tracking with active or passive data in a shallow water 

24 environment. 

25 Because of their processing stability, grid-based techniques 

26 have recently been applied to the target state estimation 



1 problem.  Unlike their gradient-based counterparts, these 

2 techniques estimate the unknown contact parameters by direct 

3 reconstruction of the state density function.  In this process, a 

4 grid of predetermined size and resolution is typically used, and 

5 the value of the density function is computed at all grid points. 

6 In principle, this computationally expensive technique can 

7 provide the desired efficacy, however, its shortcoming is a lack 

8 of efficiency.  In addition, the grid must be properly placed, 

9 and the resolution and size must be appropriately selected in 

10 order to properly represent the contact state density. 

11 Recently, efforts have been made to generate better 

12 solutions for problem solving through the use of genetic 

13 algorithm methodologies for finding peaks in non-linear 

14 functions.  U.S. Patent No. 5,148,513 to Koza et al., for 

15 example, relates to a non-linear genetic process for problem 

16 solving using co-evolving populations of entities.  The iterative 

17 process described therein operates on a plurality of populations 

18 of problem solving entities.  First, an activated entity in one 

19 of the plurality of populations performs, producing a result. 

20 The result is assigned a value and the value is associated with 

21 the producing entity.  The value assigned is computed relative to 

22 the performance of the entity in a population different from the 

23 evolving population.  Next, entities having relatively high 

24 associated values are selected from the evolving population.  The 

25 selected entities perform either crossover or fitness 

26 proportionate reproduction.  In addition, other operations such 



1 as mutation, permutation, define building blocks and editing may 

2 be used. Next, the newly created entities are added to the 

3 evolving population.  Finally, one of the environmental 

4 populations switches roles with the evolving population and the 

5 process repeats for the new evolving population and the new 

6 environmental populations. 

7 U.S. Patent Nos. 5,222,192 and 5,255,345, both to Shaefer, 

8 relate to optimization techniques using genetic algorithm 

9 methodologies.  The optimization method described therein finds 

10 the best solution to a problem of the kind for which there is a 

11 space of possible solutions.  In the method, tokens take on 

12 values that represent trial solutions in accordance with a 

13 representational scheme that defines the relationships between 

14 given token values and corresponding trial solutions.  By an 

15 iterative process, the values of the tokens are changed to 

16 explore the solution space and to converge on the best solution. 

17 For at least some iterations, characteristics of the tokens 

18 and/or the trial solutions are analyzed and the representational 

19 scheme for later iterations is modified based on the analysis for 

20 earlier iterations without interrupting the succession of 

21 iterations.  In another aspect, a set of operators is made 

22 available to enable a user to implement any of at least two 

23 different algorithms. 

24 U.S. Patent No. 5,343,554 to Koza et al. relates to an 

25 apparatus and method for solving problems using automatic 

26 function definitions, for solving problems using recursion, and 



1 for performing data encoding.  The apparatus and method create a 

2 population and then evolve that population to generate a result. 

3 When solving problems using automatic function definition, the 

4 Koza et al. apparatus and method initially create a population of 

5 entities.  Each of the entities has sub-entities of internally 

6 and externally invoked sub-entities.  The externally invoked sub- 

7 entities are capable of having actions, invocations of sub- 

8 entities which are invoked internally, and material. Also, each 

9 sub-entity which is invoked internally is capable of including 

10 actions, invocations of internally invocable sub-entities, 

11 material provided to the externally invocable sub-entity, and 

12 material.  The population is then evolved to generate a solution 

13 to the problem.  When using the process to solve problems using 

14 recursion, the entities in the population are constructed in such 

15 a manner as to explicitly represent the termination predicate, 

16 the base case and the non-base case of the recursion.  Each 

17 entity has access to a name denoting that entity so as to allow 

18 recursive references.  The population is then evolved to generate 

19 a solution to the problem.  When encoding a set of data values 

20 into a procedure capable of approximating those data values, the 

21 apparatus and process initially create a population of entities. 

22 The population is then evolved to generate a solution to the 

23 problem. 

24 U.S. Patent No. 5,394,509 to Winston relates to a data 

25 processing system and method for search for improved results from 

26 the process which utilizes genetic learning and optimization 



1 processes.  The process is controlled according to a trial set of 

2 parameters.  Trial sets are selected on the basis of an overall 

3 ranking based on results of the process as performed with a trial 

4 set.  The ranking may be based on quality, or on a combination of 

5 rankings based on both quality and diversity.  The data 

6 processing system and method described therein are applicable to 

7 manufacturing processes, database search processes and the design 

8 of products. 

9 State estimation algorithms typically used in target motion 

10 analysis systems typically employ models of platform kinematics, 

11 the environment, and sensors.  The contact or target is assumed 

12 to be of constant velocity, while the ship which is observing the 

13 target, the own ship, is free to maneuver.  Further, straight 

14 line signal propagation is assumed. 

15 The contact state parameters for position and velocity have 

16 components Xj defined as: 

17 Xj e   [RXT(t0) ,  RYT{t0) ,   VXJ.1   VyjJ / (la) 

18 where R^ft,,) and RYT^O) are tne Cartesian position components at 

19 time t0, and VXT and VYT are the corresponding velocity 

20 components.  Thus, the target state vector XT is defined as: 

21 XT=  [RXT{t:0)RyT(t0)VXTVyT]T. (lb) 

22 The observer state is similarly defined as: 

23 X0=   [Rxo{t0),  Ryo{t0),   VX0I   Vyo]T. (lc) 



s 

The contact state relative to the observer is defined as 

X(C0)   =XT-X0=  [Rx(t0), RY(t0),  Vx,  VY]T, (Id) 

3 where Rx(t0) and RY(t0) are the relative cartesian position 

4 components at time t0, and Vx and VY are the relative velocity 

5 components.  If tj is the Xth  sampling time, the state dynamic 

6 equations are governed by the equation: 

x{ti+1) = *'{ti+1, tj) x{tr)  + u{tj), (2a) 

10 

where * (ti+1, t;) is the state transition matrix defined as 

*(ti+n tj)   = 
L2x2 

0 

(t1+1 " ti)X 2x2 

I. 2x2 

(2b) 

11 with I2x2 being a two dimensional square identity matrix and u(t;) 

12 is a vector relating to ownship acceleration at time t;.  The 

13 measurement vector Z is defined by the equation 

14 Z  = H(X)   +  I], (3a) 

15 where H(X) is a nonlinear function relating Z to the state X; 

16 that is, with ß{  defined as an angular measurement and Rj defined 

17 as a range measurement, 
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H(x)   = 
An 

i?„ 

atari 

a tan 

*r(£o) 

i?y(t0) 

J?r(t0) 

jRx(t0)
2  + i?y(t0)

: 

and T7 is the white Gaussian noise vector defined as: 

*! = hßo "Hßi . . . Iß« 'Hso IJU . . .^JJ1"' 

(4) 

(5a) 

4 

5 

with mean and covariance 

E[r\]      =   0, (5b) 

E[r\r\T]   = W = 

„2 

„2 

„2 
ORO 

„2 
ORm 

(5c) 
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9 

Determining the maximum likelihood estimate (MLE) is 

equivalent to finding the X that minimizes the cost function 

\\Z-H(X)t  i.e., 



4ur = min [\\Z - H(X)\\\-1] (6) 
St 

Performing the above operation yields 

X =  [$T JT AT1 J $] -1 $r Jr &T1 Z, (7) 

where 

j =   M    | x = x, (8) 

6 is the Jacobean. 

7 The term [S^W1 J#] in equation 7 is the Fisher Information 

8 Matrix (FIM) which must be nonsingular for X to be uniquely 

9 determined from the data.  Because this is a gradient-based 

10 technique, the cost function and its derivative must be 

11 continuous.  Inherent to the problem formulation are assumed 

12 system models.  However, in many situations the models may not be 

13 known exactly.  Traditional methods of solving the nonlinear 

14 tracking problem are sensitive to noise and geometric conditions, 

15 as well as modeling, linearization and initialization errors. 

16 These sources of error can cause problems by injecting errors in 

17 the computation of J and thus the FIM.  As such these methods may 

18 be prone to ill-conditioning and instability. 
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1 For this reason, there still remains a need for more 

2 efficient systems and methods for estimating the motion of a 

3 target. 

4 

5 SUMMARY OF THE INVENTION 

6 Accordingly, it is an object of the present invention to 

7 provide a method for solving contact tracking problems and 

8 providing an estimate of the state of the contact which is more 

9 efficient than methods heretofor available. 

10 It is a further object of the present invention to provide a 

11 method as above which solves contact tracking problems under poor 

12 observability and/or multimodal conditions. 

13 it is yet another object of the present invention to provide 

14 a system which solves contact tracking problems more efficently 

15 than systems heretofor available. 

16 The foregoing objects are attained by the method and the 

17 system of the present invention. 

18 In accordance with the present invention, a method for 

19 providing an estimate of the state of the contact broadly 

20 comprises:  sensing the state of the contact; generating signals 

21 representative of the state of the contact; and processing the 

22 signals to arrive at an estimate of the state of the contact. 

23 The processing step comprises using a random search type 

24 algorithm methodology to generate said contact state estimate. 

25 The random search algorithm may be a simulated annealing based 

26 type of algorithm or a genetic-based type of algorithm. 

10 



1 The system of the present invention comprises means for 

2 sensing the motion of a contact and generating signals 

3 representative of the state of the contact and means for 

4 processing the signals to arrive at an estimate of the state of 

5 the contact, which processing means comprises pre-programmed 

6 means for applying a random search algorithm to said signals. 

7 Further details of the method and system of the present 

8 invention, as well as other objects and advantages attendant 

9 thereto, are set forth in the following description and drawings, 

10 in which like reference numerals depict like elements. 

11 

12 BRIEF DESCRIPTION OF THE DRAWINGS 

13 FIG. 1 is a schematic representation of a contact state 

14 estimation system; 

15 FIG. 2 is a flow chart of a method for contact state 

16 estimation using a simulated annealing-based algorithm 

17 methodology; 

18 FIG. 3 is an illustration of a parent selection technique; 

19 FIG. 4 is an illustration of a crossover technique; 

20 FIG. 5 is an illustration of a mutation; 

21 FIG. 6 is a flow chart of a process for contact state 

22 estimation using a genetic-based algorithm methodology; 

23 FIG. 7 is a schematic representation of the geometry used in 

24 the example set forth in this application; 

25 FIG. 8(a) illustrates the range and bearing for an MLE 

26 estimate for an 80 sample data set case; 

11 



1 FIG. 8(b) illustrates the speed and course for an MLE 

2 estimate for an 80 sample data set case; 

3 FIG. 9(a) illustrates the range and bearing for simulated 

4. annealing estimates for an 80 sample data set case; 

5 FIG. 9(b) illustrates the speed and course for simulated 

6 annealing estimates for an 80 sample data set case; 

7 FIG. 10(a) illustrates the speed and course for genetic 

8 algorithm estimates for an 80 sample data set case; 

9 FIG. 10(b) illustrates the range and bearing for genetic 

10 algorithm estimates for an 80 sample data set case; 

11 FIGS. 11(a) and (b) illustrate genetic algorithm performance 

12 densities with respect to Rx and RY and with respect to Vx and VY/ 

13 respectively, for an 80 sample data set case; 

14 FIGS. 12(a), (b), (c) and (d) illustrate genetic algorithm 

15 cumulative range performance, bearing performance, speed 

16 performance and course performance, respectively; 

17 FIG. 13(a) illustrates the range and bearing for an MLE 

18 estimate for a 10 sample data set case; 

19 FIG. 13(b) illustrates the speed and course for an MLE 

20 estimate for a 10 sample data set case; 

21 FIG. 14(a) illustrates the range and bearing for a simulated 

22 annealing estimate for a 10 sample data set case; 

23 FIG. 14(b) illustrates the speed and course for a simulated 

24 annealing estimate for a 10 sample data set case; 

25 FIG. 15(a) illustrates the range and bearing for a genetic 

26 algorithm estimate for a 10 sample data set case; 

12 
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1 FIG. 15(b) illustrates the speed and course for a genetic 

2 algorithm estimate for a 10 sample data set case; 

FIGS. 16(a) and (b) illustrate the genetic algorithm 

4 performance densities for the 10 sample data set case with 

5 respect to Rx and RY and with respect to Vx and VY, respectively; 

6 and 

7 FIGS. 17(a), (b), (c) and (d) illustrate genetic algorithm 

8 range cumulative performance, genetic algorithm bearing 

9 cumulative performance, genetic algorithm speed cumulative 

performance, and genetic algorithm course cumulative performance, 

11     respectively. 

12 
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21 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(B) 

Referring now to the drawings, FIG. l illustrates a system 

for estimating the state of a target or contact.  As shown 

therein, the system 10 includes a set of sensors 12 whose 

measurements contain the information necessary to determine the 

contact state parameters.  In systems which are used to track 

waterborne vessels (including acoustic contacts with submarines 

and torpedoes), the sensors 12 typically comprise one or more 

sonar devices for generating signals representative of the state 

22 of the contact or target. 

23 In such systems, the surrounding water environment, such as 

the ocean, can be quite noisy.  Thus, the signals generated by 

the sensors 12 are processed by a preprocessor 14 which may 

comprise any suitable pre-programmed computing device known in 

24 

25 

26 

13 



1 the art.  In the preprocessor 14, the measurement signals 

2 generated by the sensors 12 may be edited, associated, pre- 

3 whitened and/or segmented using known techniques.  Thereafter, 

4 the preprocessed signals are transmitted to a pre-programmed 

5 target estimation processor 16 for providing estimates of contact 

6 state parameters such as range, bearing, speed and course.  The 

7 processor 16 may comprise any suitable pre-programmed computer 

8 known in the art, and typically will be of the parallel 

9 processing type of computer.  The contact state estimates are 

10 evaluated for accuracy and statistical consistency using a 

11 solution consistency check system 18.  The check system looks at 

12 the residuals or features in the residuals to determine if an 

13 appropriate set of parameter estimates have been reached.  For 

14 example, if appropriate models of the physical processes which 

15 generated the sonar measurements are employed, and an efficient 

16 estimate of the contact's state parameters is achieved, then the 

17 residuals would appear simply as an unbiased white Gaussian noise 

18 sequence. However, if the modeling assumptions about the physical 

19 processes, which include contact kinematics, environmental and 

20 sensor models, are inappropriate, and/or the estimate of the 

21 contact's state parameters is inefficient, then biases could be 

22 evident in the residual sequence.  These biases can be 

23 characterized in terms of deterministic features, thus, the 

24 absence of features in the residuals would be an appropriate 

25 check for consistency of the modeling assumptions and the 

2 6 efficiency of the contact state parameter estimate.  A suitable 

14 



10 

1 check system is described in U.S. Patent No. 5,373,456 to 

2 Ferkinhoff et al. which is incorporated by reference herein and 

3 which system has been extended in U.S. Patent No. 5,581,490, 

4 which is also hereby incorporated by reference herein. 

5 In principle, a combination of algorithms can be pre- 

6 programmed into the processor 16 to provide a desired efficiency 

7 and efficacy.  For example, appropriate algorithms can be 

8 selected based on data type, trends observed in the data, system 

9 observability, or environmental conditions.  Preferably, a 

selected algorithm is used to provide an initial estimate of the 

11 contact state parameters to another algorithm or algorithms for 

12 refinement.  In some target localization systems, a mode of 

13 determining a probabilistic minimum "cost" or "penalty" is 

14 employed to provide target motion analysis solutions.  The cost 

15 or penalty function is a mathematical expression representing all 

16 possible solution states.  A gradient descent process searches 

17 the mathematical expression to determine the state having minimum 

18 cost or penalty.  This minimum cost becomes the score for the 

19 solution, and if it is low enough, the system uses the 

20 corresponding state parameters to provide an estimate of the 

21 localization of the target.  The present invention has particular 

22 utility in such a gradient descent search process. 

23 The system and the method of the present invention involves 

24 the application of random search methodologies or techniques to 

25 contact tracking.  Specifically, the processor 16 is programmed 

26 to use a simulated annealing-based algorithm methodology or a 

15 



1 genetic-based algorithm methodology as a search mechanism for the 

2 contact state estimation problem.  The principal advantage of 

3 both of these random search algorithms is that they do not use 

4 gradients and are more efficient than grid-based algorithms. 

5 They have been found to be particularly useful in solving contact 

6 tracking problems under poor observability and/or multimodal 

7 conditions. 

8 Simulated annealing-based algorithm searching or estimating 

9 takes its name from a mechanical process known as annealing.  In 

10 this process a metal, or combination of metals, are first heated 

11 and then cooled at a particular rate.  The cooling rate is 

12 controlled by a temperature schedule appropriate to allow the 

13 metallic crystals to form in the desired manner.  This process 

14 provides the desired characteristics of the final product by 

15 minimizing the internal stresses or energy.  Simulated annealing, 

16 as used for contact tracking, mimics this phenomenon. 

17 Specifically, the simulated annealing technique involves finding 

18 a state that minimizes the cost function, or equivalently 

19 maximizes the contact state density, via the annealing process. 

20 Finding this target contact state is analogous to what goes on in 

21 an annealing process, namely arranging the atomic state of the 

22 metal such that the internal energy of the metal is minimized, by 

23 iteratively adjusting temperature schedules.  The cost function 

24 used here is the RMS value of the residuals which is the z-H{Jt) 

25 component used in equation 6. 

16 
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7 

For a tracking problem, the estimation process via simulated 

annealing starts with a random guess X0 as to the state of the 

contact; although some deterministic knowledge can be employed. 

The desired contact state estimation solution is obtained 

iteratively where the estimate at the k + 1th iteration is 

computed by adding a small random perturbation, AX, to the k* 

estimate; that is, 

JtM = ftt + AX, Mc+i 
(9a) 

10 

where 

AX = 

2V(0,A2to) 

N(0,A\y) 

N(0,A2
VX) 

N(0,A2
Vy)j 

(9b) 

11 

12 

13 

14 

15 

16 

17 

and N(0,A2
()) is a white Gaussian distributed random variable with 

zero mean and variances A2
C) for the (.) parameter.  It should be 

noted that no gradient information is used in computing AX and 

that the present technigue does not reguire the cost function to 

be continuous.  The change in the cost, or energy, is computed 

via 

AE = Ek+1(X)   - Ek[X) , (10) 

17 



1 where 

2 BkM   = || Z - H(X)fw-l\Xk (11) 

3 If AE is less than zero, indicating a search in the 

4 direction of minimum energy, xk+1 is accepted; otherwise, the 

5 probability of accepting ***,   defined as T(
^I

}
' is computed using 

6 the following equation: 

7 T(4+1) = exp di*   , (12) 
i 

8 where Tj is the temperature at the j* temperature iteration.  To 

9 give the algorithm an ability to settle somewhat at the j* 

10 temperature, the temperature is only updated every IT 

11 perturbations of the contact state estimate, where IT is chosen 

12 to be a small value, e.g., less than 10.  For a tracking problem, 

13 the temperature schedule may be selected as: 

14 Tj = ccj TQ, (13) 

15 where T0 is the initial temperature and a is a constant less than 

16 unity.  A minimum value for Tj is also specified.  Equation 13 is 

17 determined empirically since standards for optimal temperature 

18 selection for this problem do not exist. 

18 



1 The decision to accept k+1 as the new estimate when AE is 

2 positive is made by comparing T(
^I) to a random number generated 

3 from a uniform distribution between zero and one.  That is to 

4     accept *+1 if 

t(lM) > 17[0,1]; (14a) 

otherwise, 

4+1 = Xk. (14b) 

8 The entire procedure is iterated until a pre-specified 

9 convergence criterion is satisfied.  The convergence criterion 

10 employed in solving tracking problems includes the use of a 

11 minimum cost, a maximum number of iterations, and a minimum 

12 change in the contact state estimate.  The estimation process 

13 employing the simulated annealing-based algorithm methodology 

14 ' search is shown in FIG. 2 in which the box numbers correspond to 

15 the step numbers of Table I.  If the algorithm is determined to 

16 have prematurely converged, it can be reinitialized at a 

17 different initial estimate, where the maximum number of re- 

18 annealings is specified.  The simulated annealing target tracking 

19 algorithm is summarized in Table I. 

19 



TABLE I 

2 
3 

4 
5 

6 
7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

Make a random guess for the 
initial target state.  

Randomly generate a small change 
in the target state estimate. 

Check new cost against stopping 
criteria, if stopping criteria 
is met STOP, otherwise go to 
step 6. 

Determine if change in energy is 
negative, if so accept change in 
target state and go to step 10, 
if not go to step 8.  

Compare the probability to a 
random threshold, if the 
probability exceeds the 
threshold go to step 10, 
otherwise go to step 3.  

Compute the energy of the target 
state estimate.        

Compute the energy (cost) of the 
new target state estimate.  

If enough iterations have 
been performed since the 
last temperature update, change 
the temperature, otherwise 
increment the temperature 
counter.   

Compute probability of accepting 
the new target state. 

10: Update the target state 
estimate.  Go to step 3. 

The stopping criteria may be some predetermined value for 

minimum cost, a maximum number of iterations, the change in 

energy (cost) is not great, or the most recent change in cost 

does not decrease the cost. 

It should be noted that the design of the algorithm provides 

the following properties.  With a sufficiently high simulated 

annearling temperature, any change in the contact state estimate, 

regardless of change in cost, will have a high probability of 

being accepted.  Here it is assumed that the change in contact 

state is in fact moving towards the minimum cost, even though the 

cost may have increased for this iteration.  As the simulated 

annealing temperature decreases, the probability of accepting the 

changes in the estimate which cause large increases in cost also 

decreases.  This mechanism allows the estimate to move out of 

20 
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1 local minima while maintaining the search towards the minimum 

2 cost.  For example, when the temperature is infinite all changes 

3 in the estimate are accepted, while for zero temperature only 

4 changes that decrease the cost are accepted.  Intermediate 

5 temperatures change the probability of accepting those changes in 

6 the contact state estimate with increased cost where the 

7 probability is a function of the change in cost and the 

8 temperature. 

9 It has been found that the genetic-based methodology for 

10 searching or estimating algorithm may also be used to obtain 

11 improved contact state estimate results.  The term "genetic 

12 algorithm" takes its name from the study of genetics in biology 

13 where the rule in nature is survival of the fittest.  In this 

14 process, individuals in the population with the best genes for 

15 the local environment have a better chance of surviving to 

16 produce offspring, thus passing their genes to the next 

17 generation.  Here, a global environment can have several local 

18 environments, each of which have an associated set of appropriate 

19 genes.  For instance, a given geographic area can have a forested 

20 area which supports browsers, while a nearby plain can support 

21 grazers.  The phenomenon in which different gene sequences are 

22 more appropriate for the different local environments is known as 

23 niche sharing.  The genetic method of propagating genes to 

24 subsequent populations is through the use of three probalistic 

25 mechanisms:  parent selection, which allows the best individuals 

26 from the current population to have a higher probability of being 

21 



1 selected; crossover, or mating, which forms new genes by 

2 combining sequences from the parents and passes the new genes 

3 along to the children; and mutation, which helps to prevent loss 

4 of genetic information. 

5 Adapting genetic algorithms for contact tracking mimics the 

6 survival of the fittest rule by defining a binary coding of the 

7 contact state variables, and operating on the bits in the same 

8 manner as genes are in biology.  For the state estimation 

9 problem, the process of determining which genes are best suited 

10 for the local environments is equivalent to finding the maxima in 

11 a multi-modal density function.  Thus, the problem becomes one of 

12 finding the bit sequences which, after converting to real 

13 numbers, determine the locations of the various maxima in the 

14 contact state density function, or equivalently the minima in the 

15 cost function.  The parent selection, crossover, and mutation 

16 mechanisms as applied to the tracking problem are as follows. 

17 Parent selection is a probalistic method for selecting the 

18 best-fit individuals, or samples, from a population of size P for 

19 mating.  Each sample of the population has an associated fitness 

20 or performance value, perf (Xi) .  Without loss of generality, let 

21 pezfiXj)   =- ±— \x = jii     i=l,2,...,P.      (is) 
\\Z - H{X) 2

W-1 v 

22 In the parent selection process, stochastic errors in 

23 sampling caused by small P can lead to excessive self replication 

22 
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7 

8 

9 

10 

11 

12 

13 

by high performance samples.  This can result in a clustering of 

these samples about one maximum of the state density function, or 

local environment.  For the tracking problem, many situations 

warrant finding all maxima in the state density function.  Thus, 

a mechanism similar to the one which produces niche sharing must 

be used to distribute samples among other peaks in the state 

density function, and care must be taken to select a large enough 

population size to facilitate niche sharing. 

For the application considered here, niche sharing is 

facilitated by scaling the performance values relative to the 

distance among all samples in the population.  Specifically, let 

the sum of the Euclidean distances from the k* sample to all 

others be defined as 

14 £(4) - Ell 4 - *il2fl*f (16) 

15 where nk is a weighting vector 

16 Q, = a, 
Kyk 

Vyk  J 

(17) 
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1 

2 

3 

For d e {Rx, RY/ Vx, VY}, with corresponding maximum d^ and 

minimum dmin, the components for the weighting vector in the k"
1 

sample are defined as 

tf dk 1.0 + 1.9 
2.0 

'nnax       '■Tnin 

(18) 

The performance function can now be scaled by D(Xk) as 

pfl{Xk)   = D(Xk) peif[Xk), (19a) 

7 

8 

which is subsequently normalized to reflect the probability of 

selection as 

pf(Xk 
pfi (4) 
p 
Ipf.i (4) 
2=1 

k = 1,2, . . .,P. 
(19b) 

10 Parent selection can now be performed P times, i.e., select XL if 

11 mm 
L 

Hpfi*i) 
1=1 

> U10.1] , (20) 
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1 where U[0,1] is a random number obtained from a uniform 

2 distribution between zero and one.  The parent selection process 

3 is illustrated in FIG. 3. 

4 Once two parents are selected, crossover is performed based 

5 on a prespecified probability.  The combination of parent 

6 selection and crossover is the major search mechanism of the 

7 algorithm; therefore, the probability of crossover is typically 

8 greater than 90%.  If crossover is not performed, the parents are 

9 copied as is to the child population. When crossover is 

10 performed, a crossover site is first randomly chosen in the bit 

11 string, where the same crossover site is used for both parents to 

12 preserve the length of the bit strings.  The two sub-strings 

13 located after the crossover site for the two parents are 

14 exchanged to create two new strings, or children. 

15 Multiple crossing sites can also be used, in which case 

16 every other sub-string is exchanged.  Note that using more 

17 crossing sites will scramble the longer gene sequences, while 

18 using fewer crossing sites will result in fewer combinations of 

19 genes.  Thus, the desired stability of the gene sequences should 

20 be taken into account when determining the number of crossing 

21 sites.  The crossover procedure is illustrated in FIG.4 for a 

22 single crossing site where there are 12 bits making up the 

23 parents, and the crossing site was chosen to cut the string 

24 between the 8th and 9th bits. 

25 For the problem at hand, the number of crossover sites is 

26 initially relatively large, and is decreased in steps when the 
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1 current number of generations equals multiples of one quarter of 

2 the maximum number of generations. This allows the algorithm to 

3 form short bit sequences in early generations, while subsequently 

4 allowing longer bit strings to form with a higher probability of 

5 surviving to subsequent generations. 

6 Once all crossover operations are completed, several options 

7 are available for handling the disposition of the children. 

8 Depending on the user preference, they can be accumulated until 

9 an arbitrary number of children are produced at which time they 

10 replace the current population, or they can immediately be added 

11 to the current population thus increasing the size of the 

12 population. 

13 A mutation operator is included to preserve genetic 

14 information; that is, if important genetic information is bred 

15 out of the population, a mutation of the genes can reintroduce 

16 this information.  Mutation is performed randomly as follows. 

17 For all samples, starting at the first bit, a uniformly 

18 distributed random number is compared to a threshold.  If the 

19 random number exceeds the threshold, the bit is complemented; 

20 i.e., for the i"1 bit and mutation threshold um, 

21 b±  =57 if {vm  < C7[0,l]) . (21) 

22 Regardless of the outcome the same procedure is applied until all 

23 bits in the population are operated on in this manner.  The 

24 following example illustrates the utility of the mutation 

25 operator, if a zero was needed in the third position in the bit 

26 



1 string to achieve high performance, or minimize the cost, but all 

2 bit sequences contained a one in this position, no combination of 

3 the parent selection or crossover operators would be sufficient 

4 to solve the problem.  Therefore, a mutation would be required to 

5 complement this bit.  An illustration of a mutation is shown in 

6 FIG. 5 where the third bit is mutated.  The above identified co- 

7 pending application of D.J. Ferkinhoff and J.G. Baylog entitled 

8 "Method and Apparatus for Performing Mutations in a Genetic 

9 Algorithm-Based Underwater Target Tracking System" (Navy Case No. 

10 77851) discloses a process and apparatus for performing mutations 

11 in connection with gentics-based algorithms for searching for 

12 peaks in functions having one or more degrees of dimensionality 

13 which is especially efficient in its utilization of compilation 

14 resources, and hence of special utility in the presently 

15 described underwater acoustic contact localization system wherein 

16 the available measure of computation resources constitute a 

17 critical factor in system design.  This co-pending application is 

18 hereby incorporated herein by reference, in its entirety. 

19 It should be noted that a high probability of mutation 

20 effectively destroys the bit sequences, yielding an inefficient 

21 search mechanism.  For this reason, to allow the bit strings to 

22 stabilize, the probability of mutation is typically less than 

23 10%, and is adjusted in a manner similar to changing the number 

24 of crossover sites. 

25 In applying genetic algorithms to a target tracking problem, 

26 a binary representation of the state parameters is used, and the 
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6 

7 

search procedure to minimize the cost is performed iteratively. 

Each member of the population corresponds to a sample of the 

state space.  Initially, a number of population samples are 

generated, preferably about 30 samples.  The samples are 

uniformly distributed in the state space.  Let kj represent the 

number of bits for the j& component of the state vector, defined 

in equation (la).  Thus, for the i* sample, 

(22) 

p*r*il °Rxl         ±Sxi • bk 1 KRxi 

RyTbi °Ryi       >-Ryi • bk KRyl 

VxTbi °vxi       ±vxl ■ bk 

[vyTbil °vyl      i-vyl ■ bk 

9 

10 

11 

12 

13 

14 

15 

where an unsigned coding scheme was chosen here.  Thus, bOj is 

the most significant bit, bkj is the least significant bit, and 

the sign information is taken care of when converting to real 

numbers.  The binary representation of the target state is then 

constructed by concatenating the binary representation of the 

state variables into a single binary sequence as 

XTbi =  [RxTbl RyTM VxTbi VyTbl] . (23) 

16 

17 

18 

The algorithm is first initialized by randomly distributing 

ones and zeros in the binary target state strings, X^, for all 

samples in the population, where the probability of any bit being 

28 
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a one is 50% and is independent of the other bits in the 

population. Let the performance function be defined as in 

equations (15) through (19). 

The parent selection, crossover and mutation operations are 

subsequently applied in an iterative manner to find the maxima in 

the performance function, which is equivalent to solving equation 

(6).  For each iteration, or generation, the performance is 

computed for each sample.  Parent selection and crossover are 

next performed P/2 times.  This generates P new samples which 

replace the parent population.  Mutation is performed and the 

performance of those few samples that were mutated is computed. 

This process continues until stopping criteria are met.  These 

criteria can include:  a maximum number of generations is 

reached, a maximum performance value (minimum cost) is reached, 

or the population is determined to have stabilized.  The genetic 

algorithm target tracking algorithm is summarized in Table II. 

TABLE II 

1:  Generate P randomly distributed 
samples of the target state 
space. 

2:  Compute the cost for all samples 
in the population. 

3:  compare the cost of all samples 
to a threshold, if the cost of 
any one is less than the 
threshold STOP, otherwise go to 
step 4. 

4:  Compute the weighted and 
normalized performance values 
for all samples. 

5:  Select parents for crossover. 6:  Perform crossover for the pairs 
produced in step 5. 

7:  Compute the cost of all samples 
in the new generation. 

8:  Compare the cost of the new 
samples to a threshold, if the 
cost of any one is below the 
threshold STOP, otherwise go to 
step 9. 
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9:  Compute weighted and normalized 
 performance for the new samples. 

11: Perform mutation. 

10: Replace original population. 

12:  Go to step 2. 

The estimation process employing genetic algorithms is 

illustrated in FIG. 6 in which the box numbers correspond to the 

step numbers of Table II.  It should be noted that while FIG. 6 

shows the cost is computed twice for the population in every 

generation, only a few samples get changed by mutation so the 

cost only needs to be computed for those few. 

While the application of genetic algorithms to estimate 

target state parameters is similar to a grid-based search in that 

it searches from a sampling of the target state space, it has 

been theoretically determined that the genetic algorithm searches 

an equivalent of n3 data points, where n is the total number of 

points in the state space the algorithm visits.  This is because 

the algorithm concentrates its search more in the areas of maxima 

that it finds; i.e., it is as if the resolution of a nonuniform 

grid is dependent upon the value of the density function at the 

grid points. 

To facilitate computational efficiency in subsequent stages 

of the target tracking system, the weighted centroids of K 

clusters are computed from the P final solutions, with k defined 

as the desired maximum number of clusters.  The centroids are 

computed using the performance values as weights.  The centroid 

of the qm cluster is computed by first determining the euclidean 

distance between all samples as 

30 



1 Dc(XilJtj)=lXi-Xj\\2    i=l,2,...,P   J=1,2,...P   j*i. (24) 

2 Starting at the closest pair, i.e, min ^c^ify! , the distance of 

3 the sample and the next closest distance to the current cluster 

4 is compared.  If the distance to the next sample is greater than 

5 a specified percentage of the previous distance, start a new 

6 cluster; otherwise add this sample to the current cluster and 

7 search for the sample with the next closest distance to the 

8 current cluster.  This procedure is iterated until all samples 

9 are assigned to clusters.  If the number of clusters at any point 

10 exceeds K, the specified percent range in the distance allowed 

11 between samples within a cluster is relaxed and the algorithm 

12 starts again.  Once the clusters are formed, the centroids of all 

13 clusters are computed as follows,  the centroid for the q* 

14 cluster, %<?'   is computed as 

15 *g= ^-ZXiPerftfJ, (25) 

2=1 

16     where Nq is the number of samples in the cluster. 

17 

18 EXAMPLE 

19 To illustrate the potential performance of simulated 

20 annealing and genetic algorithm as tracking algorithms, 
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experiments corresponding to both good and adverse conditions of 

surface ship target tracking using simulated active range and 

bearing measurements were conducted.  For comparison purposes, 

gradient based MLE results are presented.  Knowledge of the 

environmental and sensor models were assumed, and it was assumed 

that the data have been properly associated and are corrupted by 

zero mean Gaussian white noise with known variance. 

Results are presented as polar scatter plots in both range- 

bearing and speed-course state spaces. The average error and 

standard deviation of the error in the estimates were computed 

for the MLE and simulated annealing estimators., Because the 

genetic algorithm estimator returns multiple estimates, the 

cumulative performance values are also plotted as histograms for 

each of the polar coordinate states. 

The surface ship geometry used for both experiments is 

depicted in FIG. 7 and summarized in Table III.  The observer 

starts at the origin and has heading and speed of 26° and 12 

knots, respectively.  It maintains a constant speed and traverses 

two twenty-minute legs with an instantaneous course maneuver to 

154° at 20 minutes.  The target has a constant course of 270° and 

speed of 8 knots. 

TABLE III 

Geometry Time Contact Contact Observer Observer Initial Initial 
on Course Speed Course Speed Bearing Range 
leg (deg) (kts) (deg) (kts) (deg) (km) 
(min) 
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80 sample 20 
20 

270 8 26 
154 

12 79 20 

,10 sample 20 
2.5 

270 8 26 
154 

12 79 20 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1 

2 

3 

4 

5 

6 

7 

Monte-Carlo simulations were conducted with 100 noise 

sequences for cases involving 80-sample and 10-sample data sets 

with a 32-second sampling period.  Active bearing and range 

measurements were simulated with noise variances of 4.0 deg2 and 

1000 km2, respectively, for the 80-sample scenario, and noise 

variances of 4.0 deg2 and 9xl07 km2 for the 10-sample geometry. 

The latter case essentially represents a bearings-only scenario. 

As such the 80-sample geometry represents a scenario with good 

observability properties, while the 10-sample geometry represents 

a scenario with poor observability.  It is noted that 

measurements are only available for the first part of each leg of 

the 10 sample geometry. 

The simulated annealing and genetic algorithm parameters 

used for these experiments are shown in Tables IV and V 

respectively.  The MLE and simulated annealing estimators are 

initialized with the measured bearing and range. 
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TABLE IV 

2 

3 

4 

5 

6 

7 

8 

9 

10 

IT 10 

a 0.94 

T x0 100 

T • ■■•min lo-6 

CT2RX 104 m2 

a2Ry 104 m2 

a2Vx 0.01 m2/s2 

a2Vy 0.01 m2/s2 

# temperatures 352 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

TABLE V 

Rxmax 30 km Rxmin -30 km # bits 12 

Rymax 30 km Rymin -30 km # bits 12 

Vxmax 40 m/s Vxmin -40 m/s # bits 8 

Vymax 40 m/s Vymin -40 m/s # bits 8 

population size 34 

max # generations 352 

Probability of crossover 99% 

# crossing sites initial 4 final 2 

Probability of mutation initial 3% final 0.1% 

Results for the 80-sample data set case are illustrated in 

FIGS. 8 through 12 and Tables VI and VII.  This represents a 

reasonably favorable tracking condition.  As such, the MLE 

results shown in FIGS. 8(a) and (b), and presented in the form of 

summarizing error statistics in Table VI, indicate that 

consistent and accurate target solutions are achieved.  As can be 

seen from FIGS. 9(a) and 9(b), and from the data in Table VII 
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7 

8 

9 

containing summarizing error statistics for the plots of FIGS. 

9(a) and 9(b), similar performance is realized by both simulated 

annealing and genetic algorithm tracking algorithms.  The results 

produced by application of the genetic algorithm are shown in 

FIGS. 10(a)-12(d).  It is to be noted that while FIGS. 10(a) and 

10(b) show the genetic algorithm estimator appears to have a 

larger scatter than the MLE or simulated annealing estimators, 

examination of FIGS. 11(a) and (b) and 12(a), (b), (c) and (d) 

indicates the scatter is indeed very tight. 

10 

11 
12 

13 
14 

TABLE VI 

Range (km) Bearing(0) Course(o) Speed (m/s) 

Average 
Error 

-0.008 -0.07 -0.08 -0.04 

Standard 
Deviation 

0.1094 0.24 1.15 0.15 

15 

16 
17 

18 
19 

TABLE VII 

Range (km) Bearing(0) Course(0) Speed (m/s) 

Average 
Error 

-4.156 -8.26 -0.88 -0.16 

Standard 
Deviation 

0.1501 1.60 1.40 0.45 

20 

21 

22 

23 

Results for the low observability case are shown in FIGS. 13 

through 17 and presented in the form of summarizing error 

statistics in Tables VIII (for MLE) and IX (for simulated 

annealing).  The collapse of the estimates to the origin in FIG. 
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13(a), and the large errors exhibited in Table VIII are evidence 

that the MLE has a tendency to diverge under high noise, sparse 

and intermittent conditions.  On the other hand, the plots of the 

results produced by application of the simulated annealing 

algorithm to the 10-sample data set in FIGS. 14(a) and 14(b) and 

Table IX containing summarizing error statistics for the latter 

plots, and the plots of the results by application of the generic 

algorithm to the 10-sample data set in FIGS. 15(a)-17(a) show 

that simulated annealing and genetic algorithm estimates are well 

behaved and are clustered about the truth. 

11 TABLE VIII 

Range (km) Bearing(o) Course{0) Speed (m/s) 

12 
13 

Average 
Error 

-9.127 -59.3 -11.9 30.8 

14 
15 

Standard 
Deviation 

4.207 33.5 39.4 10.1 

16 TABLE IX 

Range (km) Bearing(o) Course(o) Speed (m/s) 

17 
18 

Average 
Error 

-0.145 1.49 -11.23 0.34 

19 
20 

Standard 
Deviation 

0.664 1.9 36.9 2.8 

21 

22 

23 

24 

To examine the potential computational efficiency of 

simulated annealing and genetic algorithms, compare, relative to 

the conventional grid-search technique, the estimated number of 

times each algorithm evaluates the performance function to 

36 



1 achieve the desired convergence.  With a maximum of 2 re- 

2 annealings, 10 iterations per temperature update, and 352 

3 temperature changes for the simulated annealing estimator, and 

4 with a population size of 34 for 352 populations for the genetic 

5 algorithm estimator, the number of performance evaluations is 

6 approximately 10,000 and 12,000 respectively.  For the standard 

7 grid-search technique, if one partitions the states with a 30x30 

8 position and 10x10 velocity grid, and apply 3 passes, with a 

9 finer resolution of the same number of grid points for each pass, 

10 the number of performance evaluations would be 270,000, or an 

11 order of magnitude more computations than simulated annealing and 

12 genetic algorithms.  It is noted that this is a worst case 

13 evaluation and the gain in processing efficiency can be reduced 

14 further by optimizing the search parameters of the simulated 

15 annealing and genetic algorithms and by applying a more robust 

16 stopping criteria. 

17 It is apparent that there has been provided in accordance 

18 with this invention a system and method for tracking vehicles 

19 using random search algorithms which fully satisfy the objects, 

20 means, and advantages set forth hereinbefore.  While the 

21 invention has been described in combination with specific 

22 embodiments thereof, it is evident that many alternatives, 

23 modifications, and variations will be apparent to those skilled 

24 in the art in light of the foregoing description. Accordingly, 
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1 it is intended to embrace all such alternatives, modifications, 

2 and variations 

3 
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1^ 

1 Navy Case No. 77393 

2 

3 SYSTEM AND METHOD FOR TRACKING 

4 VEHICLES USING RANDOM SEARCH ALGORITHMS 

5 

6 ABSTRACT OF THE DISCLOSURE 

7 The present invention relates to a method and a system for 

8 providing an estimate of the state of a contact.  The method 

9 includes the steps of sensing the state of the contact; 

10 generating signals representative of the state of the contact; 

11 and processing the signals using a random search procedure to 

12 arrive at an estimate of the state of the contact.  The random 

13 search procedure may employ the simulated annealing-based 

14 algorithm methodology or the genetic-based algorithm 

15 methodologies.  The system includes sensors for sensing the state 

16 of the contact and a pre-programmed computer for generating the 

17 desired contact state estimates. 
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